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EFFICIENCY ASSESSMENT USING COMMON-WEIGHT FDEA 
UNDER A MULTI-OBJECTIVE APPROACH AS WELL AS 
POSSIBILITY AND NECESSITY THEORY 
 

Abstract. In the present study, we introduce a novel method for evaluating 
Decision-Making Units (DMUs) in Fuzzy Data Envelopment Analysis (FDEA). 
Initially, the problem was modeled using common weights in Data Envelopment 
Analysis (DEA). Then, the model was developed using the possibility and necessity 
theory to obtain common weights for each input and output of the DMUs. Next, the 
performance of DMUs was evaluated. Since the results were fuzzy numbers, first, 
we adopted a ranking method to convert them into crisp numbers and then, 
compared them with each other. In the next step, ranking of the DMUs was carried 
out. Finally, a practical example was solved via the developed method. 

Keywords: Fuzzy Data Envelopment Analysis, Common Weights, 
Possibility Theory, Necessity Theory, Fuzzy Number Ranking. 
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1. Introduction 
 
Charnes, Cooper, and Rhodes developed Data Envelopment Analysis 

(DEA) and their model was acronymed CCR (Charnes, A et al, 1978). DEA 
provides a procedure for evaluating the relative efficiency of Decision-Making 
Units (DMUs) in complexes such as universities, manufactories, and stores. 
Although DEA distinguishes efficient DMUs from inefficient ones, this method 
can provide ranking only for the latter, not the efficient DMUs (Jahanshahloo et al, 
2010). Since in the CCR model, different weights are used for the input and output 
of various DMUs, real-time performance evaluation requires a general view of the 
relative importance of input and output (Li et al, 2007). However, some problems 
may arise when using a classic DEA for ranking. First of all, the scores obtained by 
the DEA do not sort the DMUs completely and some of the categorized DMUs are 
usually inefficient. This weakness is obvious in DEA application, especially when 
the total number of input and output is larger than the number of DMUs. To tackle 
this shortcoming, different approaches have been proposed (Hosseinzadeh et al, 
2013). In addition, the use of different weights in the evaluation of a DMU is 
undesirable since it prevents the flexibility of comparison between DMUs based on 
common weights (Kao and Hung, 2005). Of note, although some DMUs may have 
better performance than those with efficiency scores equal to one, they are 
classified as inefficient when they take inappropriate weights due to the maximum 
performance of other DMUs (Dyson and Thanassoulis, 1988). Accordingly, some 
researchers do not find calculating different weights for the same criterion in a set 
of similar DMUs logical, hence their search for ways to calculate common weights 
of input and output parameters of the model. In this regard, Roll et al. introduced 
the topic of common weights for the first time (Roll et al,1991). 

Although the DEA is a proper tool to calculate efficiency of DMUs, it is 
still faced with some considerable constraints, one of the most important ones 
being its sensitivity to data as it focuses on the boundary or interval. As a result, 
errors in the measurement of data cause major problems and successful application 
of the DEA method depends on finding the exact input and output values. This is 
while, in some cases, due to complexity of the input and output, it is difficult to 
obtain precise, unambiguous data. Furthermore, the available data used in 
performance analysis are often qualitative and linguistic, e.g., “old equipment” and 
“good” service (Lertworasirikul et al, 2003). 

In recent years, different approaches to the quantification of ambiguous 
and inaccurate data have been presented. Fuzzy sets theory is an instance of 
methods recommended for use in DEA models Zimmermann (1996). Generally, 
Fuzzy Data Envelopment Analysis (FDEA) models are more accurate than 
conventional methods in dealing with real-world problems. Fuzzy sets theory uses 
linguistic data in DEA models. On the other hand, FDEA models are supposed to 
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 use fuzzy Linear Programming (LP) models. There are different fuzzy ranking 
methods in fuzzy LP models that may generate various results. Therefore, ranking 
fuzzy sets requires using a proper method. Many researchers have addressed fuzzy 
sets problems in their studies Zimmermann (1996).  A study by Emrouznejad et al. 
reviewed the FDEA methods published in the last two decades and classified them 
into six primary categories: tolerance method, basis α-level method, fuzzy ranking 
method, possibility method, fuzzy mathematical method, and the fuzzy sets random 
/ type-2 method. Also, it presented a secondary ranking for a pioneering group of 
articles which did not fall into the first six classifications. In most studies applying 
the above-mentioned approaches, fuzzy models have been transformed into 
classical LP or interval models (Emrouznejad et al, 2014). One among such 
methods is the possibility theory, which is a mathematical theory for ambiguous 
numbers. It is well known as an appropriate and integrated theory for analyzing 
uncertainties in a decision-making environment (Dubois and Prade, 2001). When 
applying the possibility theory, the model should be transformed into LP (Dubois 
and Prade, 1988), Liu (1999). 

In this paper, a novel multi-objective fuzzy DEA efficiency evaluation 
approach is presented. In the developed model, common weights for each input and 
output of the DMUs for their evaluation can be calculated using the possibility and 
necessity theory. The efficiency calculated for each DMU is a fuzzy number. 
Therefore, a fuzzy numbers ranking method is used to convert the fuzzy numbers 
into crisp ones and then, they are compared with each other. 

In the present paper, a brief discussion of the DEA, common-weight DEA-
MCDM method, fuzzy DEA, possibility and necessity theory, and triangular fuzzy 
numbers ranking approach is given in Section 2. Section 3 is devoted to the 
integration of the possibility and necessity theory into the common-weight DEA-
MCDM. A practical example is solved to show applicability of the proposed 
model. The paper is summarized and concluded and some directions for future 
research are provided in Section 4. 

 
2. Methodology:  
Possibility and necessity theory integrated into DEA and common-weight 

DEA-MCDM 
 

2.1. Preliminaries 
 

2.1.1. Data Envelopment Analysis Method 
CCR model is commonly used in the studies on DEA. Suppose that there 

are n DMUs with equal numbers of input and output. If each DMU has r input and 
s output, then ݔ௜௝ and ݕ௜௞ indicate the value of the j-th input and the value of the k-
th output for the i-th DMU, respectively; i = 1.⋯ . n, ݆ = 1.⋯ . ݇ ,ݎ = 1.⋯ .  .ݏ
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Table 1. Defining data 
Outputs Inputs DMUs ࢟૚࢙ ⋯ ݕଵଵ ݔଵ௥ ⋯ ݔଵଵ 1 ࢟૚࢙ ⋯ ݕଶଵ ݔଶ௥ ⋯ ݔଶଵ 2 ⋮ ⋯ ⋮ ⋮ ⋯ ⋮ ⋮ ࢟ݕ ⋯ ࢙࢔௡ଵ ݔ௡௥⋯ ݔ௡ଵ n 

  ௜௧ݔ  ௜௧ݕ 
 

Similarly, ݔ௜ and ݕ௜  are r-dimensional input and s-dimensional output 
vectors of unit ݅, respectively, as shown in Table (1). Also, ݒ௤ and ݑ௤ are output 
weight and input weight vectors of a specifiedDMU௤, respectively, and ݍ ∈ሼ1.… . ݊ሽ. To evaluate the performance of each DMU, the CCR model can be used 
as follows (Carrillo et al, 2016), (Charnes et al, 1978): max ௤ܧ			 = ௬೜೟௩೜	௫೜೟௨೜	       (1) 

s.t ݕ௜௧ݒ௤ݔ௜௧	ݑ௤ ≤ ݅	݈݈ܽ	ݎ݋݂				0 = 1.… . ௤ݑ ݊ ≥ ɛ௥	. ௤ݒ ≥ ɛ௦	 
Where ɛ௥ and ɛ௦ are vectors of small positive numbers that keep weights 

away from zero. The above model is a nonlinear programming model that can be 
converted into an LP model as follows: max  ௤        (2)ݒ௤௧ݕ			
s.t ݔ௤௧ݑ௤ = ௤ݒ௜௧ݕ 1 − ௤ݑ	௜௧ݔ ≤ ݅	݈݈ܽ	ݎ݋݂				0 = 1.… . ௤ݑ ݊ ≥ ɛ௥	. ௤ݒ ≥ ɛ௦	 

The above model has to be solved n times to obtain efficiency for each 
DMU among n DMUs. 

 
2.1.2. Fuzzy Data Envelopment Analysis (FDEA) Method 
Fuzzy sets theory is an appropriate approach to the quantification of 

ambiguous and inaccurate input and output data in the DEA model. Suppose that 
there are n DMUs with the numbers of their input and output being equal, where 
each DMU has r input and s output. Input and output data are fuzzy numbers and ݔ෤௜௧ and ݕ෤௜௧ indicate their measures, respectively. ݒ௤ and ݑ௤ are also vectors of 
output weights and input weights for a specified DMU௤ and ݍ ∈ ሼ1.… . ݊ሽ. 
Therefore, to evaluate the performance of each DMU, the fuzzy coefficient CCR 
(FCCR) can be defined as follows:  (FCCR)	max  ௤       (3)ݒ෤௤௧ݕ			
s.t 
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This method searches for common weights of u and v that locate each n 
mapped DMU in the closest possible position to the ideal points in the sum input 
and sum output, simultaneously. Note that it does not give the best searched DMU, 
but achieves the best common weights that put all the n DMUs in the best 
positions. Hence, a multi-objective problem is selected as follows (Carrillo et al, 
2016): 
ʋ݉݅݊	൫ܦଵ(ݑ. .(ݒ … . .ݑ)௡ܦ  ൯      (4)(ݒ
s.t ݕ௜௧ݒ − ݑ	௜௧ݔ ≤ ݅	݈݈ܽ	ݎ݋݂				0 = 1. … . ݑ ݊ ≥ ɛ௥	. ݒ ≥ ɛ௦	 

Among various available approaches to multi-objective problems, the 
weighting procedure is used to minimize a weighted sum of the problem 
objectives. Thus, the weights of n objectives are equal since the importance of all 
DMUs is considered the same. Accordingly, the following model is solved: ݉݅݊			 ∑ .ݑ)௜ܦ ௡௜ୀଵ(ݒ ݒ௜௧ݕ (5)        − ݑ	௜௧ݔ ≤ ݅	݈݈ܽ	ݎ݋݂				0 = 1. … . ݑ ݊ ≥ ɛ௥	. ݒ ≥ ɛ௦ 

It is clear that the above model requires a nonlinear solution approach as 
the functions are minimized and maximized to calculate	ܦ௜. Thus, a proper 
modification to the model makes the use of linear optimization approaches easier 
for p = 1. ܦ௜(ݑ. (ݒ = ݑ	௜௧ݔ) − ((ݑ)௫ܫ + (ݒ)௬ܫ) −  (ݒ௜௧ݕ

It is obvious that Equation (5) is convertible to the following model. ݉݅݊			 ∑ ݑ	௜௧ݔ) − ݉) + ܯ) − ௡௜ୀଵ(ݒ௜௧ݕ      (6) ݉ − ݑ	௜௧ݔ ≤ ݅	݈݈ܽ	ݎ݋݂						0 = 1. … . ܯ ݊ − ݒ௜௧ݕ ≥ ݅	݈݈ܽ	ݎ݋݂							0 = 1.… . ݒ௜௧ݕ ݊ − ݑ	௜௧ݔ ≤ ݅	݈݈ܽ	ݎ݋݂				0 = 1. … . ݑ ݊ ≥ ɛ௥	. ݒ ≥ ɛ௦ ܯ.݉ ≥ 0 ɛ௥ and ɛ௦ are introduced to Equation (1) (Carrillo et al, 2016).  
In general, calculation of efficiency is done in two steps as follows: 
Initially, Model (6) is solved to obtain the weights of the input 

(minimization) and output (maximization) criteria	ݑ∗.  ∗ݒ
The efficiency of each unit can be calculated as follows: ܧ௤ = ௬೜೟௩∗௫೜೟௨∗	        (7) 

2.1.4. Integrated Possibility Theory and DEA Model 
The possibility approach was proposed to compute an FCCR model by 

Lertworasirikul et al. (2003). The FCCR model is converted to a CCR model by the 
possibility concepts as fuzzy coefficients. FCCR can be formulated as the 
following model, called the possibility CCR (PCCR) model: 
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								(ܴܥܥܲ) .ݑݔܽ݉ .ݒ ݂	̅							݂ ̅ ௤ݒ෤௤௧ݕ)ߨ (8)      ≥ ݂	̅) ≥ ௤ݑ෤௤௧ݔ))ߨ (a)ߚ = 1) ≥ ௤ݒ෤௜௧ݕ൫ߨ (ܾ)°ߙ − ௤ݑ	෤௜௧ݔ ≤ 0൯ ≥ ݅	݈݈ܽ	ݎ݋݂					ߙ = 1.… . ௤ݑ (ܿ)		݊ ≥ ɛ௥	. ௤ݒ ≥ ɛ௦ 
In the above model, β	and	ߙ଴ ∈ ሾ0.1ሿ are assumed as the acceptable values 

for the constraints (a) and (b), respectively. Furthermore, α = ሾߙ°. …… . ௡ሿ்ߙ ∈ሾ0; 1ሿ௡is assumed a column of the allowable values for the possibility constraint 
(c). 

This means that the optimal ݂ ̅ is calculated with the maximum value so 
that the level of the constraints (a), (b), and (c) reaches at least the values of .  is calculated greater than or equal to ݂̅ with the	௤ݒ෤௤௧ݕ Also, the value of .ߙ	and	°ߙ
possibility level β such that it does not exceed the specified limit for the constraints 
(Lertworasirikul et al, 2003). At the possibility level α, efficient DMU and 
inefficient DMU are defined as follows: 

Definition: A DMU is efficient at the possibility level α if and only if the 
value of ݂ ̅is greater than or equal to one; otherwise, the DMU is inefficient at the 
possibility level α. 

The following lemma is used to solve the above model; 
Suppose that ̃ݎଵ. .ଶݎ̃ ଷݎ̃ …… .  ௡ are fuzzy variables defined as fuzzy sets withݎ̃

convex and normal membership functions	(∙)ఈ೔௅ 	and (∙)ఈ೔௎  being the lower and upper 

bounds for the α-level fuzzy variables		̃ݎ௜،	i = 1.… . n. (Figure 1) at the possible 
levels ߙଶ. ଷ 0ߙ ଵandߙ ≤ .ଵߙ .ଶߙ ଷߙ ≤ 1, respectively. ݎ̃)ߨଵ + ⋯+ ௡ݎ̃ ≤ ܾ) ≥ ఈభ௅(ଵݎ̃) if and only if      (9)      ߙ + ⋯+ ఈభ௅(௡ݎ̃) ≤ ଵݎ̃)ߨ ܾ + ⋯+ ௡ݎ̃ ≥ ܾ) ≥ ఈభ௎(ଵݎ̃)       if and only if      ߙ + ⋯+ ఈభ௎(௡ݎ̃) ≥ ܾ 

If input and output numbers in the PCCR model are convex and normal, 
according to Equation (9), the PCCR model is written as follows: (ܴܲܥܥ)								 .ݑݔܽ݉ .ݒ ݂	̅							݂ ̅ ఉோ(௤ݒ෤௤௧ݕ) (10)      ≥ ఈ°ோ(௤ݑ෤௤௧ݔ)̅ ݂ ≥ ఈ°௅(௤ݑ෤௤௧ݔ) 1 ≤ ௤ݒ෤௜௧ݕ) 1 − ௤)ఈ௅ݑ	෤௜௧ݔ 	≤ ݅	݈݈ܽ	ݎ݋݂										0 = 1.… . ௤ݑ 			݊ ≥ ɛ௥	. ௤ݒ ≥ ɛ௦ 
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(ܣ)ߨ < 1	 ⟹ ℵ(ܣ) = 0 
The reference set (U) is always considered finite. 
Using the possibility distribution function, the necessity measure is 

calculated for set (A) of the reference set (U) as follows (Bandemer and Gottwald, 
1995), (Klir and Yuan, 1996): ℵ(ܣ) = ݉݅݊௜ఢ஺̅ሼ1 −  ௜ሽߨ

FDEA model is defined as the following model using fuzzy event necessity 
theory: (ܴܰܥܥ)								 .ݑݔܽ݉ .ݒ ݂	̅							݂ ̅     (14) ℵ൫ݕ෤௤௧ݒ௤ ≥ ݂	̅൯ ≥ ௤ݑ෤௤௧ݔ))ℵ (ܽ)					ߚ = 1) ≥ ௤ݒ෤௜௧ݕℵ൫ (ܾ)			°ߙ − ௤ݑ	෤௜௧ݔ ≤ 0൯ ≥ ݅	݈݈ܽ	ݎ݋݂					ߙ = 1.… . ௤ݑ  (ܥ)		݊ ≥ ɛ௥	. ௤ݒ ≥ ɛ௦ 

In the above model, β	and	ߙ଴ ∈ ሾ0.1ሿ are the assumed acceptable values 
for the constraints (a) and (b), respectively. Furthermore, α = ሾߙ°. …… . ௡ሿ்ߙ ∈ሾ0; 1ሿ௡ is assumed a column of the allowable values vector for the possibility 
constraint (c). 

If α	is a member of β. .଴ߙ ⋯.ଵߙ .  ௡, according to the dual relation betweenߙ
the possibility and necessity (13), the NCCR model can be solved similarly to the 
PCCR model (Lertworasirikul et al, 2003), (Peykani et al, 2019). 

According to the fuzzy numbers ranking method, which was introduced for 
triangular fuzzy numbers ̃ݎ௜ = ൫(̃ݎ௜)୐. .୑(௜ݎ̃) i	൯ whereୖ(௜ݎ̃) = 1.… . n (Jimenez et 

al, 2007) and considering the possibility level α with 0 ≤ α ≤ 1 , the following 
equations hold ሾ21ሿ.  ℵ(̃ݎଵ + ⋯+ ௡ݎ̃ ≤ b) ≥ α      if and only if         (15) α൫	(̃ݎଵ)ୖ + ⋯+ ൯ୖ(௡ݎ̃) + (1 − α)((̃ݎଵ)୑ + ⋯+ (୑(௡ݎ̃) ≤ b ℵ(̃ݎଵ + ⋯+ ௡ݎ̃ ≥ b) ≥ α      if and only if       α൫	(̃ݎଵ)୐ + ⋯+ ୐൯(௡ݎ̃) + (1 − α)((̃ݎଵ)୑ +⋯+ (୑(௡ݎ̃) ≥ b 
 
 

2.1.6. Triangular Fuzzy Numbers Ranking: 
An efficient way to compare fuzzy numbers is using a ranking 

function: ℜF(R) → R, where F (R) is considered as a set of fuzzy numbers and R is 
the set of real numbers. 

For every r෤ = (rଵ. rଶ. rଷ) ∈ F(R), the function ℜ	 converts each fuzzy 
number to a real number by: ℜ(r෤) = ቀ୰భାସ୰మା୰య଺ ቁ       (16) 

For both fuzzy numbers r෤ = (rଵ. rଶ. rଷ) and t̃ = (tଵ. tଶ. tଷ), a comparison is 
made as follows: r෤ 	> t̃							iff						ℜ(r෤) > ℜ(t̃) 
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r෤ 	< t̃							iff						ℜ(r෤) < ℜ(t̃) r෤ = t̃							iff						ℜ(r෤) = ℜ(t̃) 
A triangular fuzzy number r෤ = (rଵ. rଶ. rଷ) is considered positive if ℜ(r෤) > 0 
Where r෤ 	≻ 0	 if ℜ(r෤) > 0. Also, r෤ 	≈ 0	 if ℜ(r෤) = 0 and r෤ 	≺ 0 if ℜ(r෤) ≺ 0. 

If r෤ 	≈ t̃, then the triangular fuzzy numbers r෤	and	t̃ are considered equal (Sathish 
and Ganesan, 2011).  

 
2.2. Proposed Approach 
Now, suppose that there are n DMUs with numbers of their input and 

output being equal. If each DMU has r input and s output, then it can be defined as 
a vector of weights	ݑ ∈ ݒ ௥ andܴܫ ∈  ௦. Since input and output data are fuzzyܴܫ
numbers, ݔ෤௜௧ݑ	and ݕ෤௜௧ݒ are used to show the input and output measures 
corresponding to the respective DMU. 

Based on Equation (6) for fuzzy input and output with p = 1 and r + s + 2 
and considering 3n constraints, the model can be written as the following LP 
model: ݉݅݊			 ∑ ൫ݔ෤௜௧	ݑ − ݉൯ + ൫ܯ − ൯௡௜ୀଵݒ෤௜௧ݕ      (17) ݉ − ݑ	෤௜௧ݔ ≤ ݅	݈݈ܽ	ݎ݋݂						0 = 1. … . ܯ ݊ − ݒ෤௜௧ݕ ≥ ݅	݈݈ܽ	ݎ݋݂						0 = 1.… . ݒ෤௜௧ݕ ݊ − ݑ	෤௜௧ݔ ≤ ݅	݈݈ܽ	ݎ݋݂				0 = 1. … . ݊ ෍ ௥௜ୀଵݑ +෍ ௦௜ୀଵݒ = ݑ 1 ≥ ɛ௥	. ݒ ≥ ɛ௦ ܯ.݉ ≥ 0 

In the above model, the values of ɛ௥ and ɛ௦ are the same as those in the 
CCR model (1). According to Equation (8), the model can be presented as follows: min 	 ݂ ̅ ∑		)݌ (18)         ൫ݔ෤௜௧	ݑ − ݉൯ + ൫ܯ − ൯௡௜ୀଵݒ෤௜௧ݕ ≤ ݂)̅ ≥ ൫݉݌  ߚ − ݑ	෤௜௧ݔ ≤ 0൯ ≥ ݅	݈݈ܽ	ݎ݋݂											଴ߙ = 1.… . ܯ൫݌ ݊ − ݒ෤௜௧ݕ ≥ 0൯ ≥ ݅	݈݈ܽ	ݎ݋݂										ଵߙ = 1.… . ݒ෤௜௧ݕ)݌ ݊ − ݑ	෤௜௧ݔ ≤ 0) ≥ ݅	݈݈ܽ	ݎ݋݂				ଶߙ = 1.… . ݊ ෍ ௥௞ୀଵݑ +෍ ௦௞ୀଵݒ = ݑ 1 ≥ ɛ௥	. ݒ ≥ ɛ௦ ܯ.݉ ≥ 0  

The model can be simplified as follows: min 	 ݂ ̅ ෍		)݌ (19)         ൫ݔ෤௜௧	ݕ−ݑ෤௜௧ݒ൯௡௜ୀଵ ≤ ݂̅ + ݊݉ − (ܯ݊ ≥ ݑ	෤௜௧ݔ൫݌ ߚ ≥ ݉൯ ≥ ݅	݈݈ܽ	ݎ݋݂														଴ߙ = 1. … . ݒ෤௜௧ݕ൫݌ ݊ ≤ ൯ܯ ≥ ݅	݈݈ܽ	ݎ݋݂														ଵߙ = 1.… . ݊ 
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ݒ෤௜௧ݕ)݌ − ݑ	෤௜௧ݔ ≤ 0) ≥ ݅	݈݈ܽ	ݎ݋݂				ଶߙ = 1.… . ݊ ෍ ௥௞ୀଵݑ +෍ ௦௞ୀଵݒ = ݑ 1 ≥ ɛ௥	. ݒ ≥ ɛ௦ ܯ.݉ ≥ 0 
If input and output numbers in the above model are convex and normal, 

according to Equation (9), the model should be written as: min 	 ݂ ̅        (20) (෍ ൫ݔ෤௜௧	ݕ−ݑ෤௜௧ݒ൯௡௜ୀଵ )ఉ௅ ≤ ݂̅ + ݊݉ − ఈ°ோ(ݑ	෤௜௧ݔ) ܯ݊ ≥ ݅	݈݈ܽ	ݎ݋݂									݉ = 1.… . ఈభ௅(ݒ෤௜௧ݕ) ݊ ≤ ݅	݈݈ܽ	ݎ݋݂										ܯ = 1.… . ݒ෤௜௧ݕ)               		݊ − ఈమ௅(ݑ	෤௜௧ݔ 	≤ ݅	݈݈ܽ	ݎ݋݂					0 = 1.… . ݊						  ෍ ௥௞ୀଵݑ +෍ ௦௞ୀଵݒ = ݑ 1 ≥ ɛ௥	. ݒ ≥ ɛ௦ ܯ.݉ ≥ 0 
Hence, when the input and output are triangular fuzzy numbers, the above 

PCCR model is defined through Equation (11) and can be shown by: min 	 ݂ ̅         (21) (1 − ෍)(ߚ ቀݔ෤௜௧௅	ݕ−ݑ෤௜௧௅ݒቁ௡௜ୀଵ ) + ෍)ߚ ቀݔ෤௜௧ெ	ݕ−ݑ෤௜௧ெݒቁ௡௜ୀଵ ) ≤ ݂̅ + ݊݉ − 1) ܯ݊ − (°ߙ ቀݔ෤௜௧ோ	ݑቁ + °ߙ ቀݔ෤௜௧ெ	ݑቁ ≥ ݅	݈݈ܽ	ݎ݋݂						݉ = 1.… . ݊ (1 − (ଵߙ ቀݕ෤௜௧௅ݒቁ + ଵߙ ቀݕ෤௜௧ெݒቁ ≤ ݅	݈݈ܽ	ݎ݋݂									ܯ = 1.… . ݊ (1 − (ଶߙ ቀݕ෤௜௧௅ݒ − ቁݑ	෤௜௧௅ݔ + ݒ෤௜௧ெݕ)ଶߙ − (ݑ	෤௜௧ெݔ ≤ ݅	݈݈ܽ	ݎ݋݂					0 = 1. … . ݊						  ෍ ௥௞ୀଵݑ +෍ ௦௞ୀଵݒ = ݑ 1 ≥ ɛ௥	. ݒ ≥ ɛ௦ ܯ.݉ ≥ 0 
Also, the input and output are substituted into Equation (14) to solve fuzzy 

models based on the necessity theory. Equation (17) is defined as follows: ݉݅݊ 	 ݂	̅ 	 	 	 	 	 	 	 	 (22) ℵ(	∑ ൫ݔ෤௜௧	ݑ − ݉൯ + ൫ܯ − ൯௡௜ୀଵݒ෤௜௧ݕ ≤ ݂	̅) ≥ ℵ൫݉           	ߚ − ݑ	෤௜௧ݔ ≤ 0൯ ≥ ݅	݈݈ܽ	ݎ݋݂					଴ߙ = 1.… . ݊ ℵ൫ܯ − ݒ෤௜௧ݕ ≥ 0൯ ≥ ݅	݈݈ܽ	ݎ݋݂					ଵߙ = 1.… . ݊ ℵ(ݕ෤௜௧ݒ − ݑ	෤௜௧ݔ ≤ 0) ≥ ݅	݈݈ܽ	ݎ݋݂				ଶߙ = 1.… . ݊ ෍ ௥௞ୀଵݑ +෍ ௦௞ୀଵݒ = ݑ 1 ≥ ɛ௥	. ݒ ≥ ɛ௦ 



 
 
 
 
 
Moosa Darijani, Maghsoud Amiri, Mohammad Taghi Taghavifard,  
Payam Hanafizadeh   
____________________________________________________________ 

130 
 

݉.ܯ ≥ 0 
Thus, when triangular fuzzy numbers are used for input and output using 

Equation (15), we have: min 	 ݂ ̅        (23) (1 − ෍)(ߚ ቀݔ෤௜௧ெ	ݕ−ݑ෤௜௧ெݒቁ௡௜ୀଵ ) + ෍)ߚ ቀݔ෤௜௧ோ	ݕ−ݑ෤௜௧ோݒቁ௡௜ୀଵ ) ≤ ݂̅ + ݊݉ − 1) ܯ݊ − (°ߙ ቀݔ෤௜௧ெ	ݑቁ + °ߙ ቀݔ෤௜௧௅	ݑቁ ≥ ݅	݈݈ܽ	ݎ݋݂							݉ = 1.… . ݊ (1 − (ଵߙ ቀݕ෤௜௧ெݒቁ + ଵߙ ቀݕ෤௜௧ோݒቁ ≤ ݅	݈݈ܽ	ݎ݋݂								ܯ = 1.… . ݊ (1 − (ଶߙ ቀݕ෤௜௧ெݒ − ቁݑ	෤௜௧ெݔ + ݒ෤௜௧ோݕ)ଶߙ − (ݑ	෤௜௧ோݔ ≤ ݅	݈݈ܽ	ݎ݋݂				0 = 1. … . ݊			  ෍ ௥௞ୀଵݑ +෍ ௦௞ୀଵݒ = ݑ 1 ≥ ɛ௥	. ݒ ≥ ɛ௦ ܯ.݉ ≥ 0 
In general, the proposed approach ranks the DMUs with input and output 

as triangular fuzzy numbers in three steps as follows:  
Step 1: Model (17) is solved to find the weights of the input (minimization) 

and output (maximization) through Equation (21) for the possibility theory or 
Equation (23) for the necessity theory. 	ݑ∗.  ∗ݒ

Step 2: Relation (24) is calculated to obtain the efficiency of each DMU. ܧ௤ = ௬෤೜೟௩∗௫෤೜೟௨∗        (24) 

Step 3: Relation (16) is used to rank efficiency values of ܧ௤for each DMU 
as fuzzy numbers. 

 
3. Numerical example: 
 
In this section, we use a practical example to test the proposed approach. 

The data used were adopted from the study (Mirhedayatian et al, 2012). The data 
were used to choose the best welding approaches to fixing nodular cast iron engine 
blocks. The study presented 11 different welding processes. Each of them had 10 
separate criteria with two being the input criteria and eight the output criteria. The 
input and output were triangular fuzzy numbers. Welding processes were ranked 
using the proposed fuzzy DEA-TOPSIS hybrid method. The ranking welding 
processes are reported in Table 2. 

 
Table 2. Ranking of welding processes using the DEA-TOPSIS approach 

DM
U 

Welding process Rank 

1 SMAW 3 

2 FCAW 7 
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3 GMAW 6 

4 SAW 9 

5 GTAW 4 

6 PAW 4 

7 OFW 2 

8 EBW 11 

9 LBW 10 

10 Flame spray welding 8 

11 Furnace welding 1 

In the present example, all fuzzy constraints have a specified possible 
level, i.e., 

 β = ଴ߙ = ⋯ =  ௡. Common weights are obtained for five differentߙ
possible levels (0, 0.25, 0.5, 0.75, and 1). Then, the results of Welding Process 
Performance (ܧ௤) are evaluated by Relation (24) as presented in Table 3. The 
numbers are fuzzy 

Table (3) Results of Welding Process Performance Evaluation Using 
Possibility-Common Weight DEA Model 

Since the results calculated for each welding process are fuzzy numbers, 
triangular fuzzy numbers ranking approach (16) is used to compare these numbers, 
and the final ranking of the welding process is presented in Table 4. 

The NCCR approach used to rank the DMUs is pessimistic. The 
performance of each welding process is calculated using the necessity approach, 
with the results of the performance given in Table 5. Also, the ranking of the 
welding processes has been obtained using Relation (16), as reported in Table 6. 
The results obtained at different necessity and possibility levels are presented in 
Figure 3. These results show that when ݂ ̅ is calculated for necessity, the trend of 
changes at different ߙ -levels in the necessity approach is the same as that in the 
possibility approach. Since the objective function is of minimum type, it is clear 
when the necessity level increases, which is also true for ݂ ̅ value. The necessity 
approach is a pessimistic method; thus, the results are worse than the possibility 
approach findings. 

 
4. Conclusion 
 
The proposed model is a hybrid model composed of the common weights 

approach as well as the possibility theory and necessity theory and it was utilized to 
improve the FDEA for evaluating the performance of DMUs through fuzzy 
numbers as input and output according to the obtained results. The most obvious 
feature of the model is utilized when selecting the best DMU from different DMUs. 
In other words, this model can be used to select the best DMU. Also, if the results 
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of this model are compared with previous models, it can be concluded that the 
present model enjoys a higher capability in evaluation of all DMUs. Since the 
common weight method was used in this model, the computational load was 
reduced dramatically. This model can be solved using other fuzzy number 
credibility approaches, the ߙ-level-based approach, tolerance approach, fuzzy 
arithmetic, fuzzy ranking approach, the fuzzy random/type-2 fuzzy, etc.  

 
Table 3. Results of Welding Process Performance Evaluation Using 

Possibility-Common Weight DEA Model 
 

DMU Welding process ܧ௤ Possibility ߙᇱ −Level ߙ = ߙ 0 = ߙ 0.25 = ߙ 0.5 = ߙ 0.75 = 1 

1 SMAW (0.333,0.573,1.293) (0.402,0.691,1.559) (0.452,0.820,1.924) (0.477,0.926,2.274) (0.514,1.000,2.456) 

2 FCAW (0.200,0.287,0.432) (0.242,0.346,0.520) (0.285,0.427,0.663) (0.368,0.565,0.894) (0.398,0.611,0.966) 

3 GMAW (0.201,0.288,0.433) (0.243,0.347,0.522) (0.286,0.428,0.665) (0.424,0.635,0.987) (0.458,0.687,1.067) 

4 SAW (0.142,0.190,0.258) (0.172,0.230,0.311) (0.211,0.294,0.409) (0.359,0.489,0.671) (0.388,0.529,0.726) 

5 GTAW (0.202,0.289,0.435) (0.243,0.348,0.523) (0.299,0.445,0.688) (0.506,0.738,1.125) (0.548,0.799,1.217) 

6 PAW (0.202,0.289,0.435) (0.243,0.348,0.523) (0.299,0.445,0.688) (0.506,0.738,1.125) (0.548,0.799,1.217) 

7 OFW (0.329,0.567,1.279) (0.398,0.685,1.544) (0.452,0.820,1.922) (0.476,0.924,2.267) (0.515,1.000,2.452) 

8 EBW (0.111,0.143,0.184) (0.134,0.172,0.222) (0.104,0.152,0.214) (0.279,0.367,0.480) (0.302,0.397,0.519) 

9 LBW (0.111,0.144,0.185) (0.134,0.73,0.223) (0.104,0.153,0.215) (0.280,0.368,0.480) (0.303,0.398,0.520) 

10 Flame spray  weldin (0.144,0.93,0.261) (0.174,0.232,0.314) (0.214,0.297,0.413) (0.361,0.492,0.675) (0.391.0.532,0.730) 

11 Furnace welding (0.141,0.189,0.257) (0.171,0.229,0.310) (0.104,0.196,0.260) (0.301,0.422,0.590) (0.326,0.456,0.639) 

 

 

Table 4. The final ranking of the welding Process Using the Possibility-Common 
Weight DEA Model 

 

DMU Welding process Ranking Possibility ߙᇱ −Level ߙ = ߙ 0 = ߙ 0.25 = ߙ 0.5 = ߙ 0.75 = 1 

1 SMAW 1 1 1 1 1 

2 FCAW 5 5 5 5 5 

3 GMAW 4 4 4 4 4 

4 SAW 7 7 7 7 7 

5 GTAW 3 3 3 3 3 

6 PAW 3 3 3 3 3 

7 OFW 2 2 2 2 2 
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8 EBW 10 10 10 10 10 

9 LBW 9 9 9 9 9 

10 Flame spray  welding 6 6 6 6 6 

11 Furnace welding 8 8 8 8 8 

 

 

Figure 3. Comparative graph of the trend of changes ࢌതat different levels of 
Possibility and Necessity 

 

 

 

Table 5.  Results of Welding Process Performance Evaluation Using Necessity 
Common Weight DEA Model 

DMU Welding process ܧ௤ Necessity ߙ-Level ߙ = ߙ 0 = ߙ 0.25 = ߙ 0.5 = ߙ 0.75 = 1 

1 SMAW (0.514,0.999,2.454) (0.514,1.053,2.670) (0.540,1.103,2.791) (0.566,1.149,2.899) (0.589,1.191,2.997) 

2 FCAW (0.397,0.610,0.966) (0.400,0.608,0.932) (0.359,0.534,0.788) (0.369,0.548,0.807) (0.379,0.561,0.824) 

3 GMAW (0.458,0.686,1.066) (0.503,0.734,1.092) (0.459,0652,0.933) (0.4690.666,0.951) (0.478,0.678,0.967) 

4 SAW (0.388,0.529,0.725) (0.461,0.616,0.826) (0.428,0.565,0.745) (0.436,0.575,0.758) (0.443,0.584,0.770) 

5 GTAW (0.5470.798,1.216) (0.708,1.026,1.556) (0.724,1.051,1.597) (0.7391.074,1.633) (0.753,1.095,1.665) 

6 PAW (0.5470.798,1.216) (0.708,1.026,1.556) (0.724,1.051,1.597) (0.7391.074,1.633) (0.753,1.095,1.665) 

7 OFW (0.5150.999,0.2451) (0.597,1.040,2.027) (0.687,1.060,1.745) (0.706,1.087,1.780) (0.724,1.110,1.811) 

8 EBW (0.302,0.397,0.519) (0.391,0.511,0.664) (0.328,0.422,0.589) (0.330,0.446,0.596) (0.331,0.449,0.601) 

9 LBW (0.303,0.398,0.519) (0.392,0.511,0.665) (0.328,0.433,0.589) (0.330,0.447,0.596) (0.331,0.450,0.602) 

10 Flame spray  welding (0.391,0.532,0.729) (0.505,0.684,0.933) (0.517,0.701,0.958) (0.528,0.716,0.979) (0.538,0.730,0.999) 

11 Furnace welding (0.326,0.456,0.639) (0.544,0.777,1.135) (0.671,1.064,1.816) (0.685,1.095,1.890) (0.698,1.124,1.961) 

4

9

14

19

α=0.25 α=0.5 α=0.75 α=1
Possibility Necessity
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Table 6. The final ranking of the welding Process Using the necessity Common 

Weight DEA Model 

DMU Welding process Ranking Necessity ߙ-Level ߙ = ߙ 0 = ߙ 0.25 = 0.5 ߙ = ߙ 0.75 = 1 

1 SMAW 1 1 1 1 1 

2 FCAW 5 7 8 8 8 

3 GMAW 4 5 6 6 6 

4 SAW 7 8 7 7 7 

5 GTAW 3 3 4 4 4 

6 PAW 3 3 4 4 4 

7 OFW 2 2 3 3 3 

8 EBW 10 10 10 10 10 

9 LBW 9 9 9 9 9 

10 Flame spray  welding 6 6 5 5 5 

11 Furnace welding 8 4 2 2 2 
 
 

REFERENCES 
 

[1] Bandemer,H. & Gottwald, S. (1995), Fuzzy Sets, Fuzzy Logic, Fuzzy 
Methods. Chichester: Wiley; 

[2] Carrillo, Marianela & Jorge, Jesús M (2016), A Multi-objective DEA 
Approach to Ranking Alternatives. Expert Systems with Applications, 50, 130-
139; 

[3] Charnes, A., Cooper, W. W. & Rhodes, E. L. (1978), Measuring the 
Efficiency of Decision Making Units. European Journal of Operational Research, 
2, 444-429;  

[4] Dubois, D. & Prade, H. (1988), Possibility Theory: Qualitative and 
Quantitative Aspects. Handbook of Defeasible Reasoning and Uncertainty 
Management Systems, 169-226; 

[5] Dubois, D. & Prade, H. (2001), Possibility Theory, Probability Theory and 
Multiple-Valued Logics: A Clarification. Annals of Mathematics and Artificial 
Intelligence, 32(1-4), 35-66; 

[6] Dyson, R. G. & Thanassoulis, E. (1988), Reducing Weight Flexibility in Data 
Envelopment Analysis. Journal of the Operational Research Society, 39(6), 563-
576;  



 
 
 
 
 
Efficiency Assessment Using Common-weight FDEA under a Multi-objective 
Approach as well as Possibility and Necessity Theory 
____________________________________________________________ 

135 
 

[7] Emrouznejad, A., Tavana, M. & Hatami-Marbini, A. (2014), The State of 
the Art in Fuzzy Data Envelopment Analysis. Studies in Fuzziness and Soft 
Computing Envelopment Analysis, 1-46; 

[8] Hosseinzadeh Lofti, F., Jahanshahloo, G. R., Khodabakhshi, M., Rostamy-
Malkhlifeh, M., Moghaddas, Z. & Vaez-Ghasemi, M. (2013), A Review of 
Ranking Models in Data Envelopment Analysis. Journal of Applied Mathematics, 
20ArticleID492421;  

[9] Jahanshahloo, G. R., Lotfi, F. H., Khanmohammadi, M., Kazemimanesh, 
M. & Rezaie, V. (2010), Ranking of Units by Positive Ideal DMU with Common 
Weights. Expert Systems with Applications, 37, 7483–7488;  

[10] Jimenez, M., Arenas, M., Bilbao, A. & Rodriguez, M. V. (2007), Linear 
Programming with Fuzzy Parameters: An Interactive Method Resolution. 
European Journal of Operational Research 177, 1599-1609;  

[11] Kao, C. & Hung, H. (2005), Data Envelopment Analysis with Common 
Weights. The Compromise Solution Approach. Journal of the Operational 
Research Society, 56, 1196-1203;  

[12] Klir, G. J. & Yuan, B. (1996), Fuzzy Sets and Fuzzy Logic: Theory and 
Applications. Possibility Theory versus Probab. Theory, 32(2), 207-208;  

[13] Kheirollahi, Hooshang, Hessari, Peyman, Charles, Vincent & Chawshini, 
Rasoul (2017), An Input Relaxation Model for Evaluating Congestion in Fuzzy 
DEA. Croatian Operational Research Review, 8(2), 391-408; 

[14] Lertworasirikul, S., Fang, S.-C., Joines, J. A. & Nuttle, H. L. W. (2003), 
Fuzzy Data Envelopment Analysis (DEA): A Possibility Approach. Fuzzy Sets 
and Systems, 139, 379-394; 

[15] Li, X.-Y. & Cui, J.-C. (2007), Extra Resource Allocation Problem with the 
Most Compromise Common Weights Based On DEA. The First International 
Symposium on Optimization and Systems Biology;  

[16] Liu, B. (1999), Uncertain Programming. A Wiley-Interscience Publication, 
New York;  

[17] Mirhedayatian, S. M., Vahdat, S. E., Jafarian Jelodar, M. & Farzipoor 
Saen, R. (2012), Welding Process Selection for Repairing Nodular Cast Iron 
Engine Block by Integrated Fuzzy Data Envelopment Analysis and TOPSIS 
Approaches. Materials and Design, 43(2013), 22-282;  

[18] Peykani, Pejman, Mohammadi, Emran, Emrouznejad, Ali, Pishvaee, Mir 
Saman, & Rostamy-Malkhalifeh, Mohsen (2019), Fuzzy Data Envelopment 
Analysis: An Adjustable Approach. Expert Systems with Applications, 136, 439-
452; 

[19] Roll, Y., Cook, W. D. & Golany, B. (1991), Controlling Factor Weights in 
Data Envelopment Analysis. IIE Transactions 23(1);  



 
 
 
 
 
Moosa Darijani, Maghsoud Amiri, Mohammad Taghi Taghavifard,  
Payam Hanafizadeh   
____________________________________________________________ 

136 
 

[20] Sathish, S. & k.Ganesan. (2011), A Simple Approach to Fuzzy Critical Path 
Analysis in Project Networks. International Journal Scientific &Engineering 
Research, 2(12);  

[21] Zahhiri, B., Tavakkoli-Moghadam, R. & Pishvaee, M. S. (2014), A Robust 
Possibilistic Programming Approach to Multi-Period Location-Allocation of 
Organ Transplant Centers Under Uncertainty. Computer& Industrial 
Engineering, 74, 139-148; 

[22] Zimmermann, H. J. (1996), Fuzzy Set Theory and Its Application. Kluwer 
Academic Publishers.  
 




