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Abstract. In the present study, we introduce a novel method for evaluating
Decision-Making Units (DMUs) in Fuzzy Data Envelopment Analysis (FDEA).
Initially, the problem was modeled using common weights in Data Envelopment
Analysis (DEA). Then, the model was devel oped using the possibility and necessity
theory to obtain common weights for each input and output of the DMUs. Next, the
performance of DMUs was evaluated. Since the results were fuzzy numbers, first,
we adopted a ranking method to convert them into crisp numbers and then,
compared them with each other. In the next step, ranking of the DMUs was carried
out. Finally, a practical example was solved via the developed method.
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1. Introduction

Charnes, Cooper, and Rhodes developed Data Envelopment Analysis
(DEA) and their model was acronymed CCR (Charnes, A et al, 1978). DEA
provides a procedure for evaluating the relative efficiency of Decision-Making
Units (DMUs) in complexes such as universities, manufactories, and stores.
Although DEA distinguishes efficient DMUs from inefficient ones, this method
can provide ranking only for the latter, not the efficient DMUs (Jahanshahloo et al,
2010). Since in the CCR model, different weights are used for the input and output
of various DMUs, real-time performance evaluation requires a general view of the
relative importance of input and output (Li et al, 2007). However, some problems
may arise when using a classic DEA for ranking. First of all, the scores obtained by
the DEA do not sort the DMUs completely and some of the categorized DMUs are
usually inefficient. This weakness is obvious in DEA application, especially when
the total number of input and output is larger than the number of DMUs. To tackle
this shortcoming, different approaches have been proposed (Hosseinzadeh et al,
2013). In addition, the use of different weights in the evaluation of a DMU is
undesirable since it prevents the flexibility of comparison between DMUSs based on
common weights (Kao and Hung, 2005). Of note, although some DMUs may have
better performance than those with efficiency scores equal to one, they are
classified as inefficient when they take inappropriate weights due to the maximum
performance of other DMUs (Dyson and Thanassoulis, 1988). Accordingly, some
researchers do not find calculating different weights for the same criterion in a set
of similar DMUs logical, hence their search for ways to calculate common weights
of input and output parameters of the model. In this regard, Roll et al. introduced
the topic of common weights for the first time (Roll et al,1991).

Although the DEA is a proper tool to calculate efficiency of DMU, it is
still faced with some considerable constraints, one of the most important ones
being its sensitivity to data as it focuses on the boundary or interval. As a result,
errors in the measurement of data cause major problems and successful application
of the DEA method depends on finding the exact input and output values. This is
while, in some cases, due to complexity of the input and output, it is difficult to
obtain precise, unambiguous data. Furthermore, the available data used in
performance analysis are often qualitative and linguistic, e.g., “old equipment” and
“good” service (Lertworasirikul et al, 2003).

In recent years, different approaches to the quantification of ambiguous
and inaccurate data have been presented. Fuzzy sets theory is an instance of
methods recommended for use in DEA models Zimmermann (1996). Generally,
Fuzzy Data Envelopment Analysis (FDEA) models are more accurate than
conventional methods in dealing with real-world problems. Fuzzy sets theory uses
linguistic data in DEA models. On the other hand, FDEA models are supposed to
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use fuzzy Linear Programming (LP) models. There are different fuzzy ranking
methods in fuzzy LP models that may generate various results. Therefore, ranking
fuzzy sets requires using a proper method. Many researchers have addressed fuzzy
sets problems in their studies Zimmermann (1996). A study by Emrouznejad et al.
reviewed the FDEA methods published in the last two decades and classified them
into six primary categories: tolerance method, basis a-level method, fuzzy ranking
method, possibility method, fuzzy mathematical method, and the fuzzy sets random
/ type-2 method. Also, it presented a secondary ranking for a pioneering group of
articles which did not fall into the first six classifications. In most studies applying
the above-mentioned approaches, fuzzy models have been transformed into
classical LP or interval models (Emrouznejad et al, 2014). One among such
methods is the possibility theory, which is a mathematical theory for ambiguous
numbers. It is well known as an appropriate and integrated theory for analyzing
uncertainties in a decision-making environment (Dubois and Prade, 2001). When
applying the possibility theory, the model should be transformed into LP (Dubois
and Prade, 1988), Liu (1999).

In this paper, a novel multi-objective fuzzy DEA efficiency evaluation
approach is presented. In the developed model, common weights for each input and
output of the DMUs for their evaluation can be calculated using the possibility and
necessity theory. The efficiency calculated for each DMU is a fuzzy number.
Therefore, a fuzzy numbers ranking method is used to convert the fuzzy numbers
into crisp ones and then, they are compared with each other.

In the present paper, a brief discussion of the DEA, common-weight DEA-
MCDM method, fuzzy DEA, possibility and necessity theory, and triangular fuzzy
numbers ranking approach is given in Section 2. Section 3 is devoted to the
integration of the possibility and necessity theory into the common-weight DEA-
MCDM. A practical example is solved to show applicability of the proposed
model. The paper is summarized and concluded and some directions for future
research are provided in Section 4.

2. Methodology:
Possibility and necessity theory integrated into DEA and common-weight
DEA-MCDM

2.1. Preliminaries

2.1.1. Data Envelopment Analysis Method

CCR model is commonly used in the studies on DEA. Suppose that there
are n DMUs with equal numbers of input and output. If each DMU has r input and
s output, then x;; and y;; indicate the value of the j-th input and the value of the k-
th output for the i-th DMU, respectively;i=1.---.n,j = 1.---.r, k = 1.---.5.
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Table 1. Defining data

DMUs Inputs Outputs

1 X117 Xar Y11 v Yis

2 X1t Xop V21 < Yis

n Xn1 o Xnr Yn1 * Yns
xf vt

Similarly, x; and y; are r-dimensional input and s-dimensional output
vectors of unit i, respectively, as shown in Table (1). Also, v? and u? are output
weight and input weight vectors of a specifiedDMU,, respectively, and q €
{1.....n}. To evaluate the performance of each DMU, the CCR model can be used
as follows (Carrillo et al, 2016), (Charnes et al, 1978):

t,q
_ Yqv¥
max kg = xtud (D
s.t
t
yivi

<0 foralli=1....n
xfud !

ul >¢,..v? =g

Where €, and g, are vectors of small positive numbers that keep weights
away from zero. The above model is a nonlinear programming model that can be
converted into an LP model as follows:

max  yjv? )
s.t

tyq —

xqul =1

yivl —xfui <0 foralli=1....n
ul > e, . vl > g

The above model has to be solved n times to obtain efficiency for each
DMU among n DMU .

2.1.2. Fuzzy Data Envelopment Analysis (FDEA) Method

Fuzzy sets theory is an appropriate approach to the quantification of
ambiguous and inaccurate input and output data in the DEA model. Suppose that
there are n DMUs with the numbers of their input and output being equal, where
each DMU has r input and s output. Input and output data are fuzzy numbers and
%f and 9 indicate their measures, respectively. v9 and u? are also vectors of
output weights and input weights for a specified DMU, and q € {1.....n}.
Therefore, to evaluate the performance of each DMU, the fuzzy coefficient CCR
(FCCR) can be defined as follows:
(FCCR) max yiv1 3)
s.t
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Xeul=1
Jivl —xfui <0 foralli=1....n
ul >eg,.v? > g
€, and g, are introduced to Equation (1). Again, the above model has to be
solved n times to obtain efficiency for each DMU among n DMUs.

2.1.3. DEA-MCDM Common Weight Method

Common-weight DEA-MCDM approach was introduced by (Carrillo et al,
2016). In this approach, the non-negative weight vectors u € IR" and v € [R%are
considered. xfu and yfv show the corresponding sums of input and output values
for the i-th DMU. The maximum efficiency ratio of yv/xfu can be obtained by
minimizing xfu and simultaneously maximizing yfv. Note that for input and
output weights of each DMU, there exists a pair (x}u.yfv) associated with the
sums of input and output spaces as shown in Figure (1) (Carrillo et al, 2016). In a
Compromise Programming (CP) paradigm, each DMU is presented by a point near
the ideal with the sums of weighted input and weighted output (left upper corner).

DMU INFUTI INPUT2 OQUTPUTI OUTPUT2

Sum (Jllllllll
.

WEIGHTS | wl=03 ul=04 vi=0.2 ¥2=0.5
Sum Input

Figure 1. Each DMU on the sum of weighted input/output space

In this case, different sets of weights create various schemes with different
options collected in a desirable position. The aim is finding common weights to put
each n DMUs in the closest possible position to an ideal point with the minimum
sum of weighted input and the maximum sum of weighted output through a CP
approach. For each special (u.v)-dependent bi-dimensional space symptom, a
distance to the ideal point can be considered for the bi-objective problem. To
model the above assumptions, the ideal points of the sum input and sum output are
formulated as follows:

(Ix(u).ly(v)) = (min xfu.max yfv) i=1...n
Also, the distance between points (Ix ). 1, (v)) €IR? corresponding to the
ideal point and the i-th DMU is considered in Ip-norm as follows:

Dy (w.v) = ((xf u — L) + (U, ) — yfv)?)?
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This method searches for common weights of u and v that locate each n
mapped DMU in the closest possible position to the ideal points in the sum input
and sum output, simultaneously. Note that it does not give the best searched DMU,
but achieves the best common weights that put all the n DMUs in the best
positions. Hence, a multi-objective problem is selected as follows (Carrillo et al,
2016):
vmin (Dl(u. V). ... Dy (u. v)) @)

S.t
yiv—xfu<0 foralli=1....n
U=€..V = ¢

Among various available approaches to multi-objective problems, the
weighting procedure is used to minimize a weighted sum of the problem
objectives. Thus, the weights of n objectives are equal since the importance of all
DMUs is considered the same. Accordingly, the following model is solved:
min Y, D;(u.v) 5)
yiv—xfu<0 foralli=1....n
U=€..V = ¢

It is clear that the above model requires a nonlinear solution approach as
the functions are minimized and maximized to calculate D;. Thus, a proper
modification to the model makes the use of linear optimization approaches easier
forp=1.

D;(u.v) = (xlt u—IL(w)+ (Iy(v) - yltv)

It is obvious that Equation (5) is convertible to the following model.
min Y (xfu—m)+ M - ylv) (6)
m—xfu<0 foralli=1....n
M—-ytv>0 foralli=1....n
ylv—xfu<0 foralli=1....n
UZ=E€ .V =g
Mmz=0

€, and g, are introduced to Equation (1) (Carrillo et al, 2016).

In general, calculation of efficiency is done in two steps as follows:

Initially, Model (6) is solved to obtain the weights of the input
(minimization) and output (maximization) criteria u*. v*

The efficiency of each unit can be calculated as follows:

tv*

Eq =i (M)

2.1.4. Integrated Possibility Theory and DEA Model

The possibility approach was proposed to compute an FCCR model by
Lertworasirikul et al. (2003). The FCCR model is converted to a CCR model by the
possibility concepts as fuzzy coefficients. FCCR can be formulated as the
following model, called the possibility CCR (PCCR) model:
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max -
(pccr) v.f f (8)
n(Fgv? = f) = f(a)
n((Xtul = 1) = a-(b)
n(f/itvq —xfui<0)=a foralli=1....n (c)
ul > e, .v? > g

In the above model, B and a, € [0.1] are assumed as the acceptable values
for the constraints (a) and (b), respectively. Furthermore, o = [aw. .......a,]T €
[0; 1]™is assumed a column of the allowable values for the possibility constraint
(c).

This means that the optimal f is calculated with the maximum value so
that the level of the constraints (a), (b), and (c) reaches at least the values of
.a. and a. Also, the value of )7517‘7 is calculated greater than or equal to f with the
possibility level B such that it does not exceed the specified limit for the constraints
(Lertworasirikul et al, 2003). At the possibility level a, efficient DMU and
inefficient DMU are defined as follows:

Definition: A DMU is efficient at the possibility level a if and only if the
value of f is greater than or equal to one; otherwise, the DMU is inefficient at the
possibility level a.

The following lemma is used to solve the above model;

Suppose that 7. 7,. 75 ... .... T, are fuzzy variables defined as fuzzy sets with
convex and normal membership functions (-)§, and (), being the lower and upper
bounds for the a-level fuzzy variables 7;¢<i = 1.....n. (Figure 1) at the possible
levels a,. ajand a3 0 < 4. a5. a3 < 1, respectively.
n(fy + -+ 7 <b)>2a ifandonly if 9)

(F)G, + -+ (@G, < b
n(fy ++++7 =b)=a ifandonly if
Y, + -+ @)Y, =b

If input and output numbers in the PCCR model are convex and normal,

according to Equation (9), the PCCR model is written as follows:

(PCCR) 1:"33}— 7 (10)
FivDg=f

(ZLui =1

(FGuhh <1

vl —xEuDL <0 foralli=1....n

ul >eg,.v? =g
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=M

i =R

T

Figure 2. member ship function of a triangular fuzzy number

Using Lemma (1) introduced by Liu (1999) for triangular fuzzy numbers
7 = (F)E FE)M.(7F)R) i = 1.....n (see Figure 2) at the possible level @y, the
following equations hold: [13]
n(fy + - +7, <b)=a ifandonly if (11)
A —a)(FE" + -+ G + a(@M + -+ GEIY) < b
n(fy + -+ 7 =b) >2a ifandonly if
A=) (FER+ -+ GE)) +a(@EY + -+ F)M) = b

Thus, with triangular fuzzy input and output numbers, the PCCR model
converts to an LP model as follows (Lertworasirikul et al, 2003), (Peykani et al,
2019):

max _
(PCCR) . V.f f (12)
- R - M _ =

=B Fv?) —BFvY)" = f
(1 — ) ()" — ae(25u9)" =1
(1 —a)(®u?)" — ao(2tu)"” <1
(1-a)(Ftve -zt uq)L — a(yfve — %t uq)M <1 foralli=1....n
ul > e, .v?1>¢g

2.1.5. Integrated Necessity Theory and DEA Model

In the possibility theory, there is another definable measure that uses the
conjugate relation of possibility:

X(A N B) = min(&(A4).&(B))
X is called the necessity measure, where (X(A4) = 1), indicating that (A) is

necessarily true. The dual relationship between the measures of possibility and
necessity is the following:
t(A)=1-R(A) . VACU (13)
Also, the necessity measure provides the following conditions:
min(&(4).X(4)) =0
The relationship between the possibility measure and the necessity
measure satisfies the following:
n(d) =R(4) . VACU
R(A) >0 =>n(4) =1
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m(A) <1 =RMA)=0

The reference set (U) is always considered finite.

Using the possibility distribution function, the necessity measure is
calculated for set (A) of the reference set (U) as follows (Bandemer and Gottwald,
1995), (Klir and Yuan, 1996):

R(A) = ming4{1 —m;}

FDEA model is defined as the following model using fuzzy event necessity

theory:
ax _

o (14)

Ry =f)=zp ()

R(FiuT =1) = a- (b)

R(Ffvl —%fui<0)=a foralli=1....n (C)
ul>e,. . vl >¢g

In the above model, B and a, € [0.1] are the assumed acceptable values
for the constraints (a) and (b), respectively. Furthermore, o = [aw. .......a,]T €
[0; 1]™ is assumed a column of the allowable values vector for the possibility
constraint (c).

If a is a member of . @y. a4. - . a,, according to the dual relation between
the possibility and necessity (13), the NCCR model can be solved similarly to the
PCCR model (Lertworasirikul et al, 2003), (Peykani et al, 2019).

According to the fuzzy numbers ranking method, which was introduced for
triangular fuzzy numbers 7 = ((#)% (F)M. (%)R) wherei = 1....n (Jimenez et
al, 2007) and considering the possibility level o with 0 < a < 1 , the following
equations hold [21].

R(#H + -+ <b)=>a ifandonlyif (15)
a @R+ -+ EDR) + (L= O(EM + -+ GIM) <b

R(#y+ -+ =2b)>2a ifandonly if

a '+ -+ FG)Y) + (L= ()M + -+ GIM) 2 b

2.1.6. Triangular Fuzzy Numbers Ranking:

An efficient way to compare fuzzy numbers is using a ranking
function: RF(R) — R, where F (R) is considered as a set of fuzzy numbers and R is
the set of real numbers.

For every T = (ry.r,.1r3) € F(R), the function R converts each fuzzy
number to a real number by:

R(E) = (LH210) (16)

6
For both fuzzy numbers ¥ = (r;.r,.13) and t = (t;.t,.t3), a comparison is
made as follows:
F>t iff RE) >RO
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iff  RE) < RO
iff  R(E) = RO
A triangular fuzzy number ¥ = (r;.15,.13) is considered positive if R(F) > 0
Where ¥ > 0 if R(F) > 0. Also, ¥ = 0 if R(F) =0and ¥ < 0if R(F) < 0.
If ¥ ~ i, then the triangular fuzzy numbers ¥ and t are considered equal (Sathish
and Ganesan, 2011).

T <t
F=t

2.2. Proposed Approach

Now, suppose that there are n DMUs with numbers of their input and
output being equal. If each DMU has r input and s output, then it can be defined as
a vector of weightsu € IR" and v € IR®. Since input and output data are fuzzy
numbers, %fuand Ffv are used to show the input and output measures
corresponding to the respective DMU.

Based on Equation (6) for fuzzy input and output withp=1andr+s + 2
and considering 3n constraints, the model can be written as the following LP
model:
min Y, (% u—m)+ (M - yfv) (17)
m—%fu<0 forali=1..n
M-5tv>0 foralli=1....n
Jlv—xfu<0 foralli=1....n

T S
Z u+z v=1
i=1 i=1

UZ=€ .V =¢gg
Mm=0

In the above model, the values of €, and g are the same as those in the
CCR model (1). According to Equation (8), the model can be presented as follows:

min f (18)
p( X (Fu—m)+ (M -Fiv)</)2p
p(m—%fu<0)=a, foralli=1....n

p(M-3Ffv=0)=a,  foralli=1..n
pPlv—xfu<0)>a, foralli=1....n

T S
N
k=1 k=1

U=€ .V =g
M.m=0
The model can be simplified as follows:
min f (19)
n
p( Z (Fu-ytv) < f+nm-—nM) =B
i=1
p(%fu=m) = a, foralli=1....n
p(Fv< M) = oy foralli=1....n
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p(Flv—%fu<0)>a, foralli=1....n

T S
Z u+z v=1
k=1 k=1

U=€ .V =¢gg
M.m=0

If input and output numbers in the above model are convex and normal,
according to Equation (9), the model should be written as:

min f (20)
n -_—
(Zi:1(fit u—j/itv))% <f+nm-nM
@Fwk =m  forali=1....n
Fiv)h <M foralli=1....n
Fiv—-%wh, <0 foralli=1....n

T S
N
k=1 k=1

U=€..V=¢g
Mm=0

Hence, when the input and output are triangular fuzzy numbers, the above
PCCR model is defined through Equation (11) and can be shown by:

min f (1)
(1- [;)(Zi1 (5 u-ytto)) + B(Z?_l (2" u—3"v)) < F +nm —nM
1-a) (J?itR u) + a- (J?fM u) >m forali=1...n

1-ay) (nyv) + ay (nyv) <M foralli=1....n

1-ay) (nyv - fitL u) + az(flva - fitM <0 foralli=1....n

T S
Z u+ Z v=1

k=1 k=1
U=E..V =g
Mm=0

Also, the input and output are substituted into Equation (14) to solve fuzzy

models based on the necessity theory. Equation (17) is defined as follows:
min f (22)
R(Z(Ffu—m)+ (M -Fiv) < f)=p
N(m—fitu < 0) >ay foralli=1....n
8(M—-pfv=0)=a, foralli=1....n
RFfv—%tu<0)=a, foralli=1....n

T S
N
k=1 k=1

U=E..V =g
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Mm=0

Thus, when triangular fuzzy numbers are used for input and output using
Equation (15), we have:

min f (23)

oM M T R 4R -
A-pQ, (" u-g") +pQ (" u=5 ) < F+nm —nm
L= 1=
1-a) (ifM u) + a- (ffL u) >m foralli=1....n
1-ay) (y{Mv) + a; (37- v)<M foralli=1....n
tR tR

1-ay) (nyv —JZfM u) +a,(Jfv—%" u)<0 foralli=1....n

T S
IS
k=1 k=1

UZ=E..V = ¢
Mm=0

In general, the proposed approach ranks the DMUs with input and output
as triangular fuzzy numbers in three steps as follows:

Step 1: Model (17) is solved to find the weights of the input (minimization)
and output (maximization) through Equation (21) for the possibility theory or
Equation (23) for the necessity theory. u*. v*

Step 2: Relation (24) is calculated to obtain the efficiency of each DMU.

~toox

Vev
Eq =G (24)

Step 3: Relation (16) is used to rank efficiency values of E,for each DMU
as fuzzy numbers.

3. Numerical example:

In this section, we use a practical example to test the proposed approach.
The data used were adopted from the study (Mirhedayatian et al, 2012). The data
were used to choose the best welding approaches to fixing nodular cast iron engine
blocks. The study presented 11 different welding processes. Each of them had 10
separate criteria with two being the input criteria and eight the output criteria. The
input and output were triangular fuzzy numbers. Welding processes were ranked
using the proposed fuzzy DEA-TOPSIS hybrid method. The ranking welding
processes are reported in Table 2.

Table 2. Ranking of welding processes using the DEA-TOPSI S appr oach

DM Welding process Rank
U
1 SMAW 3
2 FCAW
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3 GMAW 6
4 SAW 9
5 GTAW 4
6 PAW 4
7 OFW 2
8 EBW 11
9 LBW 10
10 Flame spray welding 8
11 Furnace welding 1

In the present example, all fuzzy constraints have a specified possible
level, i.e.,

B=ag=-+=a, Common weights are obtained for five different
possible levels (0, 0.25, 0.5, 0.75, and 1). Then, the results of Welding Process
Performance (E;) are evaluated by Relation (24) as presented in Table 3. The
numbers are fuzzy

Table (3) Results of Welding Process Performance Evaluation Using
Possibility-Common Weight DEA Model

Since the results calculated for each welding process are fuzzy numbers,
triangular fuzzy numbers ranking approach (16) is used to compare these numbers,
and the final ranking of the welding process is presented in Table 4.

The NCCR approach used to rank the DMUs is pessimistic. The
performance of each welding process is calculated using the necessity approach,
with the results of the performance given in Table 5. Also, the ranking of the
welding processes has been obtained using Relation (16), as reported in Table 6.
The results obtained at different necessity and possibility levels are presented in
Figure 3. These results show that when f is calculated for necessity, the trend of
changes at different « -levels in the necessity approach is the same as that in the
possibility approach. Since the objective function is of minimum type, it is clear
when the necessity level increases, which is also true for f value. The necessity
approach is a pessimistic method; thus, the results are worse than the possibility
approach findings.

4, Conclusion

The proposed model is a hybrid model composed of the common weights
approach as well as the possibility theory and necessity theory and it was utilized to
improve the FDEA for evaluating the performance of DMUs through fuzzy
numbers as input and output according to the obtained results. The most obvious
feature of the model is utilized when selecting the best DMU from different DMUs.
In other words, this model can be used to select the best DMU. Also, if the results
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of this model are compared with previous models, it can be concluded that the
present model enjoys a higher capability in evaluation of all DMUs. Since the
common weight method was used in this model, the computational load was
reduced dramatically. This model can be solved using other fuzzy number
credibility approaches, the a-level-based approach, tolerance approach, fuzzy
arithmetic, fuzzy ranking approach, the fuzzy random/type-2 fuzzy, etc.

Table 3. Results of Welding Process Perfor mance Evaluation Using

Possibility-Common Weight DEA Model

DMU | Welding process E, Possibility a' —Level
a=0 a =0.25 a=0.5 a=0.75 a=1

1 SMAW (0.333,0.573,1.293) | (0.402,0.691,1.559) | (0.452,0.820,1.924) | (0.477,0.926,2.274) | (0.514,1.000,2.456)
2 FCAW (0.200,0.287,0.432) | (0.242,0.346,0.520) | (0.285,0.427,0.663) | (0.368,0.565,0.894) | (0.398.0.611,0.966)
3 GMAW (0.201,0.288,0.433) | (0.243,0.347,0.522) | (0.286,0.428,0.665) | (0.424,0.635,0.987) | (0.458,0.687,1.067)
4 SAW (0.142,0.190,0.258) | (0.172,0.230,0.311) | (0.211,0.294,0.409) | (0.359,0.489,0.671) | (0.388.,0.529,0.726)
5 GTAW (0.202,0.289,0.435) | (0.243,0.348,0.523) | (0.299,0.445,0.688) | (0.506,0.738,1.125) | (0.548.,0.799,1.217)
6 PAW (0.202,0.289,0.435) | (0.243,0.348,0.523) | (0.299,0.445,0.688) | (0.506,0.738,1.125) | (0.548,0.799,1.217)
7 OFW (0.329,0.567,1.279) | (0.398,0.685,1.544) | (0.452,0.820,1.922) | (0.476,0.924,2.267) | (0.515,1.000,2.452)
8 EBW (0.111,0.143,0.184) | (0.134,0.172,0.222) | (0.104,0.152,0.214) | (0.279,0.367,0.480) | (0.302,0.397,0.519)
9 LBW (0.111,0.144,0.185) | (0.134,0.73,0.223) | (0.104,0.153,0.215) | (0.280,0.368,0.480) | (0.303,0.398,0.520)
10 Flame spray weldin (0.144,0.93,0.261) | (0.174,0.232,0.314) | (0.214,0.297,0.413) | (0.361,0.492,0.675) | (0.391.0.532,0.730)
11 Furnace welding

(0.141,0.189,0.257)

(0.171,0.229,0.310)

(0.104,0.196,0.260)

(0.301,0.422,0.590)

(0.326,0.456,0.639)

Table 4. Thefinal ranking of the welding Process Using the Possibility-Common
Weight DEA Modéel

DMU | Welding process a' —Level Ranking Possibility
a=0 a =025 a=0.5 a=0.75 a=1
1 SMAW 1 1 1 1 1
2 FCAW 5 5 5 5 5
3 GMAW 4 4 4 4 4
4 SAW 7 7 7 7 7
5 GTAW 3 3 3 3 3
6 PAW 3 3 3 3 3
7 OFW 2 2 2 2 2
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8 EBW 10 10 10 10 10
9 LBW 9 9 9 9 9
10 Flame spray welding 6 6 6 6 6
11 Furnace welding 8 8 8 8 8
19
14
9
4
a=0.25 a=0.5 a=0.75 a=1
==@==Possibility Necessity

Figure 3. Compar ative graph of thetrend of changes fat different levels of
Possibility and Necessity

Table 5. Resultsof Welding Process Perfor mance Evaluation Using Necessity
Common Weight DEA Model

DMU | Welding process E,4 Necessity a-Level
a=0 a =0.25 a=0.5 a =0.75 a=1

1 SMAW (0.514,0.999,2.454) | (0.514,1.053,2.670) | (0.540,1.103,2.791) | (0.566,1.149,2.899) | (0.589,1.191,2.997)
2 FCAW (0.397,0.610,0.966) | (0.400,0.608,0.932) | (0.359,0.534,0.788) | (0.369,0.548,0.807) | (0.379,0.561,0.824)
3 GMAW (0.458,0.686,1.066) | (0.503,0.734,1.092) | (0.459,0652,0.933) | (0.4690.666,0.951) | (0.478,0.678,0.967)
4 SAW (0.388,0.529,0.725) | (0.461,0.616,0.826) | (0.428,0.565,0.745) | (0.436,0.575,0.758) | (0.443,0.584,0.770)
5 GTAW (0.5470.798,1.216) | (0.708,1.026,1.556) | (0.724,1.051,1.597) | (0.7391.074,1.633) | (0.753,1.095,1.665)
6 PAW (0.5470.798,1.216) | (0.708,1.026,1.556) | (0.724,1.051,1.597) | (0.7391.074,1.633) | (0.753,1.095,1.665)
7 OFW (0.5150.999,0.2451) | (0.597,1.040,2.027) | (0.687,1.060,1.745) | (0.706,1.087,1.780) | (0.724,1.110,1.811)
8 EBW (0.302,0.397,0.519) | (0.391,0.511,0.664) | (0.328,0.422,0.589) | (0.330,0.446,0.596) | (0.331,0.449,0.601)
9 LBW (0.303,0.398,0.519) | (0.392,0.511,0.665) | (0.328,0.433,0.589) | (0.330,0.447,0.596) | (0.331,0.450,0.602)
10 Flame spray welding| (0.391,0.532,0.729) | (0.505,0.684,0.933) | (0.517,0.701,0.958) | (0.528,0.716,0.979) | (0.538,0.730,0.999)
11 Furnace welding

(0.326,0.456,0.639)

(0.544,0.777,1.135)

(0.671,1.064,1.816)

(0.685,1.095,1.890)

(0.698,1.124,1.961)
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Table 6. Thefinal ranking of the welding Process Using the necessity Common
Weight DEA Model

DMU Welding process Ranking Necessity a-Level
a=0|a=025|a=05|a=075 |a=1
1 SMAW 1 1 1 1 1
2 FCAW 5 7 8 8 8
3 GMAW 4 5 6 6 6
4 SAW 7 8 7 7 7
5 GTAW 3 3 4 4 4
6 PAW 3 3 4 4 4
7 OFW 2 2 3 3 3
8 EBW 10 10 10 10 10
9 LBW 9 9 9 9 9
10 Flame spray welding
11 Furnace welding 8 4 2 2 2
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